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ABSTRACT
In the era of Basel II a powerful tool for bankruptcy prognosis is vital for banks. 
The tool must be precise but also easily adaptable to the bank’s objectives 
regarding the relation of false acceptances (Type I error) and false rejections 
(Type II error). We explore the suitability of smooth support vector machines 
(SSVM), and investigate how important factors such as the selection of appro-
priate accounting ratios (predictors), length of training period and structure of 
the training sample infl uence the precision of prediction. Moreover, we show 
that oversampling can be employed to control the trade-off between error types, 
and we compare SSVM with both logistic and discriminant analysis. Finally, 
we illustrate graphically how different models can be used jointly to support 
the decision-making process of loan offi cers. Copyright © 2008 John Wiley 
& Sons, Ltd.

key words  insolvency prognosis; support vector machines; statistical learning 
theory; non-parametric classifi cation

INTRODUCTION

Default prediction is at the core of credit risk management and has therefore always attracted special 
attention. It has become even more important since the Basel Committee on Banking Supervision 
(Basel II) established borrowers’ rating as the crucial criterion for minimum capital requirements of 
banks. The methods for generating rating fi gures have developed signifi cantly over the last 10 years 
(Krahnen and Weber, 2001). The rationale behind the increased sophistication in predicting borrow-
ers’ default risk is the aim of banks to minimize their cost of capital and to mitigate their own 
bankruptcy risks.
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In this paper we intend to contribute to the increasing sophistication by exploring the predicting 
power of smooth support vector machines (SSVM). SSVM are a variant of the conventional support 
vector machines (SVM). The working principle of SVM in general can be described very easily. 
Imagine a group of observations in distinct classes such as balance sheet data from solvent and 
insolvent companies. Assume that the observations are such that they cannot be separated by a linear 
function. Rather than fi tting nonlinear curves to the data, SVM handle this problem by using a spe-
cifi c transformation function—the kernel function—that maps the data from the original space into 
a higher-dimensional space where a hyperplane can do the separation linearly. The constrained 
optimization calculus of SVM gives a unique optimal separating hyperplane and adjusts it in such 
a way that the elements of distinct classes possess the largest distance to the hyperplane. By re-
transforming the separating hyperplane into the original space of variables, the typical nonlinear 
separating function emerges (Vapnik, 1995). The main difference between SSVM and SVM is the 
following: the SSVM technique formulates the problem as an unconstrained minimization problem. 
This formulation has mathematical properties such as strong convexity and desirable infi nite 
differentiability.

Our aim is threefold when using SSVM. Firstly, we examine the power of the SSVM in predict-
ing company defaults; secondly, we investigate how important factors that are exogenous to the 
model, such as selecting the appropriate set of accounting ratios, length of training period and struc-
ture of the training sample, infl uence the precision; and thirdly, we explore how oversampling and 
downsampling affect the trade-off between Type I and Type II errors. In addition, we illustrate 
graphically how loan offi cers can benefi t from jointly considering the prediction results of different 
SSVM variants and different models.

There are basically three distinct approaches in predicting the risk of default: option theory-based 
approaches, parametric models and non-parametric methods. While the fi rst class relies on the rule 
of no arbitrage, the latter two are based purely on statistic principles. The popular (Merton, 1974) 
model treats the company’s equity as the underlying asset of a call option held by shareholders. In 
case of insolvency shareholders deny exercising. The probability of default is derived from an 
adapted Black–Scholes formula. Later, several authors (e.g., Longstaff and Schwartz, 1995; Mella-
Barral and Perraudin, 1997; Leland and Toft, 1996; Zhou, 2001; to name only a few) proposed 
variations to ease the strict assumptions on the structure of the data imposed by the Merton model. 
These approaches are frequently denoted as structural models. However, the most challenging 
requirement is the knowledge of market values of debt and equity. This precondition is a severe 
obstacle to using the Merton model adequately as it is only satisfi ed in a minority of cases.

Parametric statistical models can be applied to any type of data, whether they are market based 
or book based. The fi rst model introduced was discriminant analysis (DA) for univariate (Beaver, 
1966) and multivariate models (Altman, 1968). After DA usage of the logit and probit approach for 
predicting default was proposed in Martin (1977) and Ohlson (1980). These approaches rely on the 
a priori assumed functional dependence between risk of default and predictor. DA requires a linear 
functional dependence, or a pre-shaped polynomial functional dependence in advanced versions. 
Logit and probit tools work with monotonic relationships between default event and predictors such 
as accounting ratios. However, such restrictions often fail to meet the reality of observed data. This 
fact makes it clear that there is a need for an approach that, in contrast to conventional methods, 
relaxes the requirements on data and/or lowers the dependence on heuristics. Semi-parametric 
models as in Hwang et al. (2007) are between conventional linear models and non-parametric 
approaches. Nonlinear classifi cation methods such as support vector machines (SVM) or neural 
networks are even stronger candidates to meet these demands as they go beyond conventional 



514  W. Härdle et al.

Copyright © 2008 John Wiley & Sons, Ltd. J. Forecast. 28, 512–534 (2009)
 DOI: 10.1002/for

discrimination methods. Tam and Kiang (1992) and Altman et al. (1994) focus on neural networks. 
In contrast, we concentrate on SVM exclusively.

The SVM method is a relatively new technique and builds on the principles of statistical learning 
theory. It is easier to handle compared to neural networks. Furthermore, SVM have a wider scope 
of application as the class of SVM models includes neural networks (Schölkopf and Smola, 2002). 
The power of SVM technology becomes evident in a situation as depicted in Figure 1 where operat-
ing profi t margin and equity ratio are used as explanatory variables. A separating function similar 
to a parabola (in black) appears in the two-dimensional space. The accompanying light-grey lines 
represent the margin boundaries whose shape and location determine the distance of elements from 
the separating function. In contrast, the logit approach and discriminant DA yield the (white) linear 
separating function (Härdle et al., 2007a).

Selecting the best accounting ratios for executing the task of predicting is an important issue in 
practice but has not received appropriate attention in research. We address this issue of how impor-
tant the chosen set of predictors is for the outcome. For this purpose we explore the prediction 
potential of SSVM within a two-step approach. First, we derive alternative sets of accounting ratios 
that are used as predictors. The benchmark set comes from Chen et al. (2006). A second set is defi ned 
by a 1-norm SVM, and the third set is based on the principle of adding only those variables that 
contain the most contrary information with respect to an initial set that is a priori chosen. We call 
the latter procedure the incremental forward selection of variables. As a result we are working with 
three variants of SSVM. In the second step, these variants are compared with respect to their predic-
tion power. We also compare SSVM with two traditional methods: the logit model and linear dis-
criminant analysis.

The analysis is built on 28 accounting ratios of 20,000 solvent and 1000 insolvent German com-
panies. Our fi ndings show that the different SSVM types have an overall good performance with the 
means of correct predictions ranging from 70% to 78%. The SSVM on the basis of incremental 

Figure 1. SVM-separating function (black) with margin in a two-dimensional space
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forward selection clearly outperform the SSVM based on predictors selected by the 1-norm SVM. 
It is also found that oversampling infl uences the trade-off between Type I and Type II errors. Thus, 
oversampling can be used to make the relation of the two error types an issue of bank policy.

The rest of the paper is organized as follows. The following two sections describe the data, per-
formance measures and SVM methodology. In the fourth section the variable selection technique 
and outcome are explained. The fi fth section presents the experimental settings, estimation procedure 
and fi ndings, and illustrates selected results. The sixth section concludes.

DATA AND MEASURES OF ACCURACY

In this study of the potential virtues of SVM in insolvency prognosis the CreditReform database is 
employed. The database consists of 20,000 fi nancially and economically solvent and 1000 insolvent 
German companies observed once in the period from 1997 to 2002. Although the companies were 
randomly selected, accounting information dates most frequently in 2001 and 2002. Approximately 
50% of the observations come from this period. The industry distribution of the insolvent companies 
is as follows: manufacturing 25.7%, wholesale and retail trade 20.1%, real estate 9.4%, construction 
39.7% and others 5.1%. The latter includes businesses in agriculture, mining, electricity, gas and 
water supply, transport and communication, fi nancial intermediation social service activities and 
hotels and restaurants. The 20,000 solvent companies belong to manufacturing (27.4%), wholesale 
and retail trade (24.8%), real estate (16.9%), construction (13.9%) and others (17.1%). There is only 
low coincidence between the industries represented in the insolvent and the solvent group of ‘others’. 
The latter comprises many companies in industries such as publication administration and defense, 
education and health. Figure 2 shows the distribution of solvent and insolvent companies across 
industries. A set of balance sheet and income statement items describes each company. The ones we 
use for further analysis are described below:

• AD (amortization and depreciation)
• AP (accounts payable)
• AR (account receivable)
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Figure 2. The distribution of solvent and insolvent companies across industries
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• CA (current assets)
• CASH (cash and cash equivalents)
• CL (current liabilities)
• DEBT (debt)
• EBIT (earnings before interest and tax)
• EQUITY (equity)
• IDINV (growth of inventories)
• IDL (growth of liabilities)
• INTE (interest expense)
• INV (inventories)
• ITGA (intangible assets)
• LB (lands and buildings)
• NI (net income)
• OI (operating income)
• QA (quick assets)
• SALE (sales)
• TA (total assets)
• TL (total liabilities)
• WC (working capital (= CA − CL))

The companies appear in the database several times in different years; however, each year of 
balance sheet information is treated as a single observation. The data of the insolvent companies 
were collected 2 years prior to insolvency. The company sizes are measured by total assets. We 
construct 28 ratios to condense the balance sheet information (see Table I). However, before dealing 
with the CreditReform dataset, some companies whose behavior is very different from other ones 
are fi ltered out in order to make the dataset more compact. The data pre-processing procedure is 
described as follows:

1. We excluded companies whose total assets were not in the range of 105–107 EUR (remaining 
insolvent: 967; solvent: 15,834).

2. In order to compute the accounting ratios AP/SALE, OI/TA, TL/TA, CASH/TA, IDINV/INV, 
INV/SALE, EBIT/TA and NI/SALE, we have removed companies with zero denominators 
(remaining insolvent: 816; solvent 11,005).

3. We dropped outliers, that is, in the insolvent class companies with extreme values of fi nancial 
indices have been removed (remaining insolvent: 811; solvent: 10,468).

After pre-processing, the dataset consists of 11,279 companies (811 insolvent and 10,468 solvent). 
In the following analysis, we focus on the revised dataset.

The performance of the SSVM is evaluated on the basis of three measures of accuracy: Type I 
error rate (%), Type II error rate (%) and total error rate (%). The Type I error is the ratio of the 
number of insolvent companies predicted as solvent ones to the number of insolvent companies. The 
Type II error is the ratio of the number of solvent companies predicted as insolvent ones to the 
number of solvent companies. Accordingly, the error-type rates (in percentage) are defi ned as 
follows

• Type I error rate = FN/(FN + TP) × 100 (%);
• Type II error rate = FP/(FP+ TN) × 100 (%);
• Total error rate = (FN + FP)/(TP + TN + FP + FN) × 100 (%);
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where

True positive (TP): Predict insolvent companies as insolvent ones
False positive (FP): Predict solvent companies as insolvent ones
True negative (TN): Predict solvent companies as solvent ones
False negative (FN): Predict insolvent companies as solvent ones

The following matrix explains the terms used in the defi nition of error rates:

Table I. Defi nitions of accounting ratios used in the analysis

Variable Ratio Indicator for

X1 NI/TA Profi tability
X2 NI/SALE Profi tability
X3 OI/TA Profi tability
X4 OI/SALE Profi tability
X5 EBIT/TA Profi tability
X6 (EBIT + AD)/TA Profi tability
X7 EBIT/SALE Profi tability
X8 EQUITY/TA Leverage
X9 (EQUITY-ITGA)/ Leverage

(TA-ITGA-CASH-LB) Leverage
X10 CL/TA Leverage
X11 (CL-CASH)/TA Leverage
X12 TL/TA Leverage
X13 DEBT/TA Leverage
X14 EBIT/INTE Leverage
X15 CASH/TA Liquidity
X16 CASH/CL Liquidity
X17 QA/CL Liquidity
X18 CA/CL Liquidity
X19 WC/TA Liquidity
X20 CL/TL Liquidity
X21 TA/SALE Activity
X22 INV/SALE Activity
X23 AR/SALE Activity
X24 AP/SALE Activity
X25 Log(TA) Size
X26 IDINV/INV Growth
X27 IDL/TL Growth
X28 IDCASH/CASH Growth

Predicted class

Positive Negative 

Actual Positive True positive (TP) False negative (FN) 
Class Negative False positive (FP) True negative (TN)

SVM METHODOLOGY

In recent years, the so-called support vector machines (SVM), which have their roots in the theory 
of statistical learning (Burges, 1998; Christianini and Shawe-Taylor, 2000; Vapnik, 1995) have 
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become one of the most successful learning algorithms for classifi cation as well as for regression 
(Drucker et al., 1997; Mangasarian and Musicant, 2000; Smola and Schölkopf, 2004). Some features 
of SVM make them particularly attractive for predicting the default risk of companies. SVM are a 
non-parametric technique that learn the separating function from the data; they are based on a sound 
theoretical concept, do not require a particular distribution of the data, and deliver an optimal solu-
tion for the expected loss from misclassifi cation. SVM estimate the separating hyperplane between 
defaulting and non-defaulting companies under the constraint of a maximal margin between the two 
classes (Vapnik, 1995; Schölkopf and Smola, 2002).

SVM can be formulated differently. However, in all variants either a constrained minimization 
problem or an unconstrained minimization problem is solved. The objective function in these opti-
mization problems basically consists of two parts: a misclassifi cation penalty part which stands for 
model bias and a regularization part which controls the model variance. We briefl y introduce three 
different models: the smooth support vector machines (SSVM) (Lee and Mangasarian, 2001), the 
smooth support vector machines with reduced kernel technique (RSVM) and the 1-norm SVM. The 
SSVM will be used for classifi cation and the 1-norm SVM will be employed for variable selection. 
The RSVM are applied for oversampling in order to mitigate the computational burden due to 
increasing the number of instances in the training sample.

Smooth support vector machines
The aim of the SVM technique is to fi nd the separating hyperplane with the largest margin from the 
training data. This hyperplane is ‘optimal’ in the sense of statistical learning: it strikes a balance 
between overfi tting and underfi tting. Overfi tting means that the classifi cation boundary is too curved 
and therefore has less ability to classify unseen data correctly. Underfi tting, on the other hand, gives 
a too simple classifi cation boundary and leaves too many misclassifi ed observations (Vapnik, 1995). 
We begin with linear support vector machines. Given a training dataset S = {(x1, y1),  .  .  .  , (xn, yn)} 
� �d × �, where xi ∈ �d is the input data and yi ∈ {−1, 1} is the corresponding class label, a con-
ventional SVM separating hyperplane is generated by solving a convex optimization problem given 
as follows:
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where C is a positive parameter controlling the trade-off between the training error (model bias) and 
the part of maximizing the margin (model variance) that is achieved by minimizing w2
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In a solution of (2), x is given by xi = {1 − yi(w�xi + b)}+ for all i where the plus function x+ is 
defi ned as x+ = max{0, x}. Thus, we can replace xi in (2) by {1 − yi(w�xi + b)}+. This will convert 
the problem (2) into an unconstrained minimization problem as follows:

 min
w b

i i
i

n

d

C
y w b w b

,( )∈ +
=

+
− +( ){ } + +( )∑

� 1 2
1

1

2
2
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This formulation reduces the number of variables from d + 1 + n to d + 1. However, the 
objective function to be minimized is not twice differentiable, which precludes the use of a fast 
Newton method. In the SSVM, the plus function x+ is approximated by a smooth p-function, 

 p x x e x, log ,α
α

αα( ) = + +( ) >−1
1 0. Replacing the plus function with a very accurate smooth approx-

imation p-function gives the smooth support vector machine formulation:
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where a > 0 is the smooth parameter. The objective function in problem (4) is strongly convex and 
infi nitely differentiable. Hence, it has a unique solution and can be solved by using a fast Newton–
Armijo algorithm. For the nonlinear case, this formulation can be extended to the nonlinear SVM 
by using the kernel trick as follows:
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where K(xi, xj) is a kernel function. This kernel function represents the inner product of f(xi) and 
f(xj), where f is a certain mapping from input space �d to a feature space F. We do not need to 
know the mapping of f explicitly. This is the so-called kernel trick. The nonlinear SSVM classifi er 
can be expressed in matrix form as follows:

 u K A b K A u bj j
uj

� �, ,x x( ) + = ( ) +
≠

∑
0

 (6)

where A = [x�
1;  .  .  .  ; x�

n] and Aj = x�
j.

Reduced support vector machine
In large-scale problems, the full kernel matrix will be very large so it may not be appropriate to use 
the full kernel matrix when dealing with (5). In order to avoid facing such a big full kernel matrix, 
we brought in the reduced kernel technique (Lee and Huang, 2007). The key idea of the reduced 
kernel technique is to randomly select a portion of data and to generate a thin rectangular kernel 
matrix, then to use this much smaller rectangular kernel matrix to replace the full kernel matrix. In 
the process of replacing the full kernel matrix by a reduced kernel, we use the Nyström approxima-
tion (Smola and Schölkopf, 2000) for the full kernel matrix:

 K A A K A A K A A K A A, , , ,� � � �( ) ≈ ( ) ( ) ( )−� � � �1
 (7)
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where K(A, A�) = Kn×n, Ãñ×d is a subset of A and K(A, Ã) = K̃n×ñ is a reduced kernel. Thus, we have

 K A A u K A A K A A K A A u K A A u, , , , ,� � � � �( ) ≈ ( ) ( ) ( ) = ( )−� � � � � �
1

 (8)

where ũ ∈ �ñ is an approximated solution of u via the reduced kernel technique. The reduced kernel 
method constructs a compressed model and cuts down the computational cost from O(n3) to O(ñ3). 
It has been shown that the solution of reduced kernel matrix approximates the solution of full kernel 
matrix well. The SSVM with the reduced kernel are called RSVM.

1-Norm support vector machine
The 1-norm support vector machine replaces the regularization term w2

2
 in (1) with the �1-norm 

of w. The �1-norm regularization term is also called the LASSO penalty (Tibshirani, 1996). It tends 
to shrink the coeffi cients w’s towards zeros in particular for those coeffi cients corresponding to 
redundant noise features (Zhu et al., 2003; Williams and Seeger, 2001). This nice feature will lead 
to a way of selecting the important ratios in our prediction model. The formulation of 1-norm SVM 
is described as follows:
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The objective function of (9) is a piecewise linear convex function. We can reformulate it as the 
following linear programming problem:
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where sj is the upper bound of the absolute value of wj. In the optimal solution of (10) the sum of 
sj is equal to w1.

The 1-norm SVM can generate a very sparse solution w and lead to a parsimonious model. In a 
linear SVM classifi er, solution sparsity means that the separating function f(x) = w�x + b depends 
on very few input attributes. This characteristic can signifi cantly suppress the number of nonzero 
coeffi cient w’s, especially when there are many redundant noise features (Fung and Mangasarian, 
2004; Zhu et al., 2003). Therefore the 1-norm SVM can be a very promising tool for the variable 
selection tasks. We will use it to choose the important fi nancial indices for our bankruptcy progno-
sis model.

SELECTION OF ACCOUNTING RATIOS

In principle any possible combination of accounting ratios could be used as explanatory variables 
in a bankruptcy prognosis model. Therefore, appropriate performance measures are needed to gear 
the process of variable selection towards picking the ratios with the highest separating power. In 
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Chen et al. (2006) accuracy ratio (AR) and conditional information entropy ratio (CIER) determine 
the selection procedure’s outcome. It turned out that the ratio ‘accounts payable divided by sales’, 
X24 (AP/SALE), has the best performance values for a univariate SVM model. The second selected 
variable was the one combined with X24 that had the best performance in a bivariate SVM model. 
This is the analogue of forward selection in linear regression modeling. Typically, improvement 
declines if new variables are added consecutively. In Chen et al. (2006) the performance indicators 
started to decrease after the model included eight variables. The described selection procedure is 
quite lengthy, since there are at least 216 accounting ratio combinations to be considered. We will 
not employ the procedure here but use the chosen set of eight variables as the benchmark set V1. 
Table II presents V1 in the fi rst column.

We propose two different approaches for variable selection that will simplify the selection pro-
cedure. The fi rst one is based on 1-norm SVM introduced above. The SVM were applied to the 
period from 1997 to 1999. We selected the variables according to the size of the absolute values of 
the coeffi cients w from the solution of the 1-norm SVM. Table II displays the eight selected variables 
as V2. We obtain eight variables out of 28. Note that fi ve variables, X2, X3, X5, X15 and X24, are 
also in the benchmark set V1.

The second variable selection scheme is incremental forward variable selection. The intuition 
behind this scheme is that a new variable will be added into the already selected set, if it brings in 
the most extra information. We measure the extra information for an accounting ratio using the 
distance between this new ratio vector and the space spanned by the current selected ratio subset. 
This distance can be computed by solving a least-squares problem (Lee et al., 2008). The ratio with 
the farthest distance will be added into the selected accounting ratio set. We repeat this procedure 
until a certain stopping criterion is satisfi ed. The accounting ratio X24 (AP/SALE) is used as the 
initial selected accounting ratio. Then we follow the procedure seven times to select seven more 
extra accounting ratios. The variable set generated is called V3. We will use these three variable 
sets, V1, V2 and V3, for further data analysis in the next section. The symbol + denotes the variables 
that are common to all sets: X2, X3, X5 and X24.

Table II. Selected variables

Variable Defi nition V1 V2 V3

X2+ NI/SALE x x x
X3+ OI/TA x x x
X4 OI/SALE x
X5+ EBIT/TA x x x
X6 (EBIT + AD)/TA x
X7 EBIT/SALE x
X8 EQUITY/TA x
X12 TL/TA x
X13 DEBT/TA x
X15 CASH/TA x x
X21 TA/SALE x
X22 INV/SALE x
X23 AR/SALE x
X24+ AP/SALE x x x
X26 IDINV/INV x
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EXPERIMENTAL SETTING AND RESULTS

In this section we present our experimental setting and results. We compare the performance of three 
sets of accounting ratios, V1, V2 and V3, in our SSVM-based insolvency prognosis model. The 
performance is measured by Type I error rate, Type II error rate and total error rate. Fortunately, in 
reality, there is only a small number of insolvent companies compared to the number of solvent 
companies. Due to the small share in a sample that refl ects reality, a simple classifi cation such as 
naive Bayesian or a decision tree tends to classify every company as solvent. Such a classifi cation 
would imply accepting all companies’ loan applications and would thus lead to a very high Type I 
error rate while the total error rate and the Type II error rate are very small. Such models are useless 
in practice.

Our cleaned dataset consists of around 10% of insolvent companies. Thus, the sample is fairly 
unbalanced although the share of insolvent companies is higher than in reality. In order to deal with 
this problem, insolvency prognosis models usually start off with more balanced training and testing 
samples than reality can provide. For example, Härdle et al. (2007b) employ a downsampling strat-
egy and work with balanced (50%/50%) samples. The chosen bootstrap procedure repeatedly ran-
domly selects a fi xed number of insolvent companies from the training set and adds the same number 
of randomly selected solvent companies. However, in this paper we adopt an oversampling strategy, 
to balance the size between the solvent and the insolvent companies, and refer to the downsampling 
procedure primarily for reasons of reference.

Oversampling duplicates the number of insolvent companies a certain number of times. In this 
experiment, we duplicate in each scenario the number of insolvent companies as many times as 
necessary to reach a balanced sample. Note that in our oversampling scheme every solvent and 
insolvent company’s information is utilized. This increases the computational burden due to increas-
ing the number of training instances. We employ the reduced kernel technique introduced above to 
mediate this problem.

All classifi ers we need in these experiments are reduced SSVM with the Gaussian kernel, which 
is defi ned as

 K ex z x z,( ) = − −γ 2
2

where g is the width parameter. In nonlinear SSVM, we need to determine two parameters: the 
penalty term C and g . The 2D grid search will consume a lot of time. In order to cut down the search 
time, we adopt the uniform design model selection method (Huang et al., 2007) to search an appro-
priate pair of parameters.

Performance of SSVM
We conduct the experiments in a scenario in which we always train the SSVM bankruptcy progno-
sis model from the data at hand and then use the trained SSVM to predict the following year’s cases. 
This strategy simulates the real task of prediction which binds the analyst to use past data for fore-
casting future outcomes. The experimental setting is described in Table III. The number of periods 
which enter the training set changes from 1 year (S1) to 5 years (S5).

In Tables IV and V we report the results for the oversampling and downsampling strategy respec-
tively. Mean and standard deviation of Type I, Type II and total error rates (misclassifi cation rates) 
are shown. We perform these experiments for the three variable sets, V1 to V3, and compare the 
oversampling and downsampling scheme in each experiment. All experiments are repeated 30 times 
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Table III. The scenario of our experiments

Scenario Observation period of training set Observation period of testing set

S1 1997 1998
S2 1997–1998 1999
S3 1997–1999 2000
S4 1997–2000 2001
S5 1997–2001 2002

Table IV. Results of oversampling for three variable sets (RSVM)

Set of accounting 
ratios

Scenario Type I error rate Type II error rate Total error rate

Mean SD Mean SD Mean SD

V1 S1 33.16 0.55 26.15 0.13 26.75 0.12
S2 31.58 0.01 29.10 0.07 29.35 0.07
S3 28.11 0.73 26.73 0.16 26.83 0.16
S4 30.14 0.62 25.66 0.17 25.93 0.15
S5 24.24 0.56 23.44 0.13 23.48 0.13

V2 S1 29.28 0.92 27.20 0.24 27.38 0.23
S2 28.20 0.29 30.18 0.18 29.98 0.16
S3 27.41 0.61 29.67 0.19 29.50 0.17
S4 28.12 0.74 28.32 0.19 28.31 0.15
S5 23.91 0.62 24.99 0.10 24.94 0.10

V3 S1 29.28 0.83 25.11 0.25 25.46 0.21
S2 31.27 0.62 29.79 0.34 29.94 0.35
S3 30.91 0.13 27.21 0.19 27.48 0.18
S4 32.00 0.54 25.19 0.17 25.61 0.14
S5 26.98 0.42 22.90 0.11 23.08 0.11

Table V. Results of downsampling for three variable sets (SSVM with Gaussian kernel) 

Set of accounting 
ratios

Scenario Type I error rate Type II error rate Total error rate

Mean SD Mean SD Mean SD

V1 S1 32.20 3.12 28.98 1.70 29.26 1.46
S2 29.74 2.29 28.77 1.97 28.87 1.57
S3 30.46 1.88 26.23 1.33 26.54 1.17
S4 31.55 1.52 23.89 0.97 24.37 0.87
S5 28.81 1.53 23.09 0.73 23.34 0.69

V2 S1 29.94 2.91 28.07 2.15 28.23 1.79
S2 28.77 2.58 29.80 1.89 29.70 1.52
S3 29.88 1.88 27.19 1.32 27.39 1.19
S4 29.06 1.68 26.26 1.00 26.43 0.86
S5 26.92 1.94 25.30 1.17 25.37 1.06

V3 S1 30.87 3.25 26.61 2.45 26.98 2.11
S2 33.31 2.16 28.60 2.01 29.08 1.65
S3 31.82 1.52 26.41 1.45 26.80 1.31
S4 35.0 2.13 24.29 0.77 24.96 0.68
S5 30.66 1.60 21.92 0.96 22.30 0.92
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because of the randomness in the experiments. The randomness is very obvious in the downsampling 
scheme (see Table V). Each time we only choose negative instances with the same size of the whole 
positive instances. The observed randomness in our oversampling scheme (Table IV) is due to apply-
ing the reduced kernel technique to solving the problem. We use the training set in the downsampling 
scheme as the reduced set. That is, we use all the insolvent instances and the equal number of solvent 
instances as our reduced set in generating the reduced kernel. Then we duplicate the insolvent part 
of the kernel matrix to balance the size of insolvent and solvent companies.

Both tables reveal that different variable selection schemes produce dissimilar results with respect 
to both precision and deviation of predicting. The oversampling scheme shows better results in the 
Type I error rate but has slightly bigger total error rates. It is also obvious that in almost all models 
a longer training period works in favor of accuracy of prediction. Clearly, the oversampling schemes 
have much smaller standard deviations in the Type I error rate, Type II error rate, and total error 
rate than the downsampling one. According to this observation, we conclude that the oversampling 
scheme will generate a more robust model than the downsampling scheme.

Figure 3 illustrates the development (learning curve) of the Type I error rate and total error rate 
with regard to variable set V3 for both oversampling and downsampling. The bullets on the lines 
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mark the different training scenarios. For example, the fi rst bullets from the left represent S1 (train-
ing set from 1997, testing set from 1998), the second bullets illustrate S2 (training set from 1997 to 
1998, testing set from 1999) etc. For the purpose of better visibility, the Type I error rate is only 
indirectly displayed as 100 − Type I error rate. The upper solid line in gray represents the oversam-
pling scheme and the black solid line the downsampling one. Note that the performance in terms of 
the Type I error rate is worse the higher the distance between the upper end of the diagram and the 
solid lines. The learning curve over the time frame the training sample covers shows an upward 
tendency between S1 and S5 for the number 100 − Type 1 error rate. However, the curves are non-
monotonic. There is a disturbance for the forecast of year 1999 that is based on training samples 
that cover 1997 to 1998, and also one for the forecast of year 2001 based on training samples cov-
ering 1997 to 2000. Both disturbances may have been caused by the reform of the German insolvency 
code that came into force in 1999. The most important objective of the reform was to allow for more 
company restructuring and less liquidation than before. This reform considerably changed the behav-
ior of German companies towards declaring insolvency, and thus most likely the nature of balance 
sheets that are associated with insolvent companies.

The disturbances are less visible with respect to the overall performance. The dashed lines near 
the lower edge of the diagram box show total error rates, gray for the oversampling and black for 
the downsampling scheme. There is a clear tendency towards a lower total error rate from S2 to S5 
for both schemes. The downsampling line is slightly below the oversampling one, representing a 
slightly better performance in terms of the mean of the total error rate. However, this result has to 
be seen in the light of the trade-off between magnitude and stability of results, as oversampling 
yields much more stable results. The standard deviations for V3 are only a small portion of the 
numbers generated by the downsampling procedure across all training scenarios (Tables IV and 
V).

Table VI presents the comparison between the sets by focusing on the total error rate. It indicates 
by an asterisk whether the differences in means are signifi cant at the 10% level via t-test and, in 
addition, gives the set which is superior in the dual comparison. Variable set V2 is nearly absent in 
Table VI. Thus V2 is clearly outperformed by both sets V1 and V3. There is no clear distinction 
between V1 and V3 except for Scenario S5. Given the long training period V3 is superior in both 
the downsampling and oversampling scenarios and generates the lowest total error rate in absolute 
terms.

In order to investigate the effect of the oversampling versus the downsampling scheme we follow 
the setting as above, but we use the V3 variable set. For each training–test pair, we carry out over-
sampling for positive instances from 6 to 15 times. We show the trend and effect in Figure 4. It is 

Table VI. Statistical signifi cance in differences in means (10% level) 
between the three variable sets: total error 

Sets S1 S2 S3 S4 S5

Oversampling
V1 vs. V2 V1* V1* V1* V1* V1*
V1 vs. V3 V3* V1* V1* V3* V3*
V2 vs. V3 V3* V3* V3* V3*
Downsampling
V1 vs. V2 V2* V1* V1* V1* V1*
V1 vs. V3 V3* V1* V3*
V2 vs. V3 V3* V3* V3* V3*
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easy to see that the Type I (II) error rate decreases (increases) as the oversampling times increase. 
This feature implies that the machine would have a tendency of classifying all companies as solvent 
if the training sample had realistic shares of insolvent and solvent companies. Such behavior would 
produce a Type I error rate of 100%. The more balanced the sample is, the higher the penalty for 
classifying insolvent companies as solvent. This fact is illustrated in Figure 4 by the decreasing curve 
with respect to the number of duplications of insolvent companies.

Often banks favor a strategy that allows them to minimize the Type II errors for a given number 
of Type I errors. The impact of oversampling on the trade-off between the two types of errors—
shown in Figure 4—implies that the number of oversampling times is a strategic variable in training 
the machine. This number can be determined by the bank’s aim regarding the relation of Type I and 
Type II errors.
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Figure 4. The effect of oversampling on Type I and Type II error rates for scenario S5 and variables set V3
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Comparison with logit and linear discriminant analysis
The examination of SSVM is incomplete without comparing it to highly used traditional methods 
such as the logistic model (LM) and linear discriminant analysis (DA). Therefore, we replicate the 
research design of the previous section with both traditional models. In addition, we test whether 
the difference in means in the total error rate is statistically signifi cant. The comparison of means 
with regard to the total error rate is presented in Tables VII and VIII for the oversampling and 
downsampling strategy respectively. Table IX summarizes the comparison of the approaches and 
displays the statistical signifi cance of their mean differences. Asterisks indicate the out-performance 

Table VII. Comparison of the total error rate (%) as generated by SSVM 
with LM and DA: oversampling for three variable sets

Set of accounting 
ratios

Scenario SSVM LM DA

Mean Mean Mean

V1 S1 26.75 26.50 25.60
S2 29.35 28.96 27.22
S3 26.83 28.94 27.42
S4 25.93 26.20 25.55
S5 23.48 26.95 28.23

V2 S1 27.38 26.80 26.20
S2 29.98 28.63 28.70
S3 29.50 29.52 29.46
S4 28.31 28.43 28.08
S5 24.94 29.22 31.42

V3 S1 25.46 25.07 23.65
S2 29.94 28.29 27.02
S3 27.48 27.89 25.84
S4 25.61 26.60 24.85
S5 23.08 25.32 26.15

Table VIII. Comparison of the total error rate (%) as generated by SSVM 
with LM and DA: downsampling for three variable sets 

Set of accounting 
ratios

Scenario SSVM LM DA

Mean Mean Mean

V1 S1 29.26 26.86 27.34
S2 28.87 28.62 28.26
S3 26.54 27.54 28.22
S4 24.37 24.80 25.47
S5 23.34 24.81 25.86

V2 S1 28.23 27.28 28.62
S2 29.70 29.29 29.65
S3 27.39 28.56 29.58
S4 26.43 26.41 27.96
S5 25.37 26.52 29.69

V3 S1 26.98 26.03 25.47
S2 29.08 28.04 27.22
S3 26.80 26.60 26.51
S4 24.96 25.25 25.44
S5 22.30 23.96 24.31
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of the logistic model or discriminant analysis by SSVMs at the 10% level via t-test. It is obvious 
that the SSVM technique yields the better results, the longer the period is from which the training 
observations are taken. In fact, the results show that the SSVM works signifi cantly better than LM 
and DA in most cases in S3 to S5, with the clearest advantage for testing sets S4 and S5, where the 
accounting information of the predicted companies dates most frequently in 2001 and 2002.

We also investigate the effect of oversampling on LM and DA. We follow the same setting in the 
previous section, doing oversampling for positive instances from 6 to 15 times. Unlike the SSVM-
based insolvency prognosis model, the DA approach is insensitive in both Type I and Type II error 
rates to the replication of positive instances. The result for DA is illustrated in Figure 5. The LM 
approach has very similar results to the SSVM model. We will not show the result here.

More data visualization
Each SSVM model has its own output value. We use this output to construct 2D coordinate systems. 
Figure 6 shows an example for scenario S5 where the scores of the SSVMV3 model (SSVMV1 model) 
are represented by the horizontal (vertical) line. A positive (negative) value indicates predicted 
insolvency (solvency). We then map all insolvent companies in the testing set onto the coordinate 
systems. There are 132 insolvent companies and 2866 solvent companies in this testing set. We also 
randomly choose the same amount of solvent companies from the testing set.

The plus points in the lower left quadrant and the circle points in the upper right quadrant show 
the number of Type I errors and Type II errors, respectively, in both models. Plus points in the upper 
right quadrant and circle points in the lower left quadrant refl ect those companies that are predicted 

Table IX. Statistical signifi cance in differences of means (10% level) 
between SSVM and LM and SSVM and DA, respectively, for the sets V1 
to V3: total error rate

V1 S1 S2 S3 S4 S5

Oversampling
SSVM vs. LM * * *
SSVM vs. DA * *
Downsampling
SSVM vs. LM * * *
SSVM vs. DA * * *

V2 S1 S2 S3 S4 S5

Oversampling
SSVM vs. LM * *
SSVM vs. DA *
Downsampling
SSVM vs. LM * *
SSVM vs. DA * * *

V3 S1 S2 S3 S4 S5

Oversampling
SSVM vs. LM * * *
SSVM vs. DA *
Downsampling
SSVM vs. LM *
SSVM vs. DA * *
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correctly by both models. Circles and plus points in the lower right quadrant (upper left quadrant) 
represent confl icting prognoses. We also report the number of insolvent companies and the number 
of solvent companies in each quadrant of Figure 6. The two different insolvency prognosis models 
based on V1 and V3, respectively, can be considered as alternative experts. The two forecasts for 
each instance in the testing set is plotted in the diagram. The proposed visualization scheme could 
be used to support loan offi cers in their fi nal decision on accepting or rejecting a client’s application. 
Furthermore, this data visualization scheme can also be applied to two different learning algorithms, 
such as SSVMV3 vs. LMV3 and SSVMV3 vs. DAV3. We show these data visualization plots in Figures 
7 and 8. If the loan application has been classifi ed as solvent or insolvent by alternative machines, 
it is most likely that the prognosis meets reality (the plus points in the upper right quadrant and the 
circle points in the lower left quadrant). Opposing forecasts, however, should be taken as a hint to 
evaluate the particular company more thoroughly, for example by employing an expert team, or even 
by using a third model.
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CONCLUSION

In this paper we apply different variants of support vector machines to a unique dataset of German 
solvent and insolvent companies. We use a priori a given set of predictors as a benchmark, and 
suggest two further variable selection procedures; the fi rst procedure uses the 1-norm SVM and the 
second, incremental way consecutively selects the variable that is the farthest one from the column 
space of the current variable set. Given the three SSVM based on distinct variable sets, the relative 
performance of the types of smooth support vector machines is tested. The performance is measured 
by error rates. The two sets of variables newly created here lead to a dissimilar performance of 
SSVM. The selection of variables by the 1-norm SVM clearly underperforms compared to the 
incremental selection scheme. This difference in accuracy hints at the need for further research with 
respect to the variable selection. The training period makes a clear difference, though. Results 
improve considerably if more years of observation are used in training the machine. The SSVM 
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model benefi ts more from longer training periods than traditional methods do. As a consequence the 
logit model and discriminant analysis are both outperformed by the SSVM in long-term training 
scenarios. Moreover, the oversampling scheme works very well in dealing with unbalanced datasets. 
It provides fl exibility to control the trade-off between Type I and Type II errors, and is therefore a 
strategic instrument in a bank’s hand. The results generated are very stable in terms of small devia-
tions of Type I, Type II and total error rates.

Finally, we want to stress that SSVM should be considered not as a substitute for traditional 
methods but rather as a complement which, when employed side by side with either the logit model 
or discriminant analysis, can generate new information that helps practitioners select those compa-
nies that are diffi cult to predict and, therefore, need more attention and further treatment.
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